
A Component Architecture for
Platform-Independent Space Link Extension

Services

Norman Lamarra and Imin Lin

Norman.Lamarra@jpl.nasa.gov
Imin.Lin@jpl.nasa.gov

Jet Pro ulsion Laboratory
California E stitute of Technology

Pasadena , CA. 91 109
October 1998

mailto:Norman.Lamarra@jpl.nasa.gov
mailto:Imin.Lin@jpl.nasa.gov

TABLE OF CONTENTS

... TABLE OF CONTENTS .. rn
TABLE OF FIGURES ... v
Abstract .. v
1.0 Introduction and Background .. 1

1.1 TMOD Services ... 2
1.2 Commmcabon Services .. 3
1.3 SLE Services .. 4

2.0 Component Software .. 4
2.1 Definition of a Component ... 5

"2.2 Benefits of Component Approach .. 5
2.3 C++ Construction of a Component ... 6
2.4 Examples of Compon en. ... 8

2.5 Platform Issues ... 9
3.0 SLE Service Components ... 10

3.1 Architectural Layers ... 10
3.2 Common Application Programming Interface .. 11
3.3 Interface to Communications Inflastructure ... 13
3.4 Mi-astructure Proxy ... 13
3.5 Example Implementations .. 14

4.0 SLE Service Component Framework16
4.1 Software Build Process ... 17
4.2 Installation Process .. 18

. .

2.4.1 GIOMONl Component .. 8

4.3 Configuration Management .. 18
5.0 Conclusions .. 18

7.0 References ... -20

9.0 Appendix: Code Examples .. 23

6.0 Acknowledgements .. 20

8.0 Glossary of Acronyms ... 22

9.1 Example Use of GIOMON1 Component .. 23
9.1.1 Header File for GIOMONl Component htdace ... 23
9.1.2 Header File for GIOMON 1 Component .. 25
9.1.3 Example Program Code Using the Component ... 27

11
..

TABLE OF FIGURES
Figure 1: Analogy of Hardware Components .. 5
Figure 2: A Simple Example ofa Component Carrying Two Interfaces 7
Figure 3: Service Overview .. 1 1
Figure 4: Service Component Architecture ... 13
Figure 5: Reusable Implementation (via Proxies) .. 14
Figure 6: Example A: ProviderKJser have same network .. 15
Figure 7: Example B: ProviderkJser have different networks .. 16

Abstract
-. -

We are proposing a novel method of specifying and implementing CCSDS Space Link
Extension (SLE) services. Traditionally, such services would be functionally specified (perhaps
via an Application Programming Interface, or API) and accessed via a "wire protocol"
implemented on a physical network (e.g., TCP/IP over Ethernet). Specification of such a service
interface at the "wire level" typically is used to guarantee interoperability between separate
implementations (e.g., between both sides of an interface agreement). However, when issues
such as security are considered (some of which have not yet been adequately addressed), such a
wire-level specification is likely to severely limit future implementations and capabilities of the
SLE services. We are therefore proposing a novel layered architecture for the SLE services,
which frees each party from having to interoperate at the wire level; effectively, we move the
interface from the wire to the service with significant benefits. Our approach thus specifies the
SLE services as a set of software components that communicate with each other using standard
invocation methods implemented on every computer (e.g., "subroutine call"). Our definition of a
component is: "A standalone implementation of an object interface which provides standard
ways to find and invoke its methods". This "component approach" has many benefits, such as:

a) separates API specification from implementation issues (language, platform, etc.);
b) allows modular deployment of service components;
c) leverages recent advances in software development methodology, such as rapid

d) facilitates operation over standards-based infktructure;
e) frees application code from knowledge of lower layers;
f) allows applications and services to utilize modules dynamically.

prototyping and reusability;

We finther propose to provide a layered implementation of these component interfaces, thus
providing several options for a new kind of interface agreement:

1) one side could provide all the code implementing a specific wire protocol end to

2) each side could provide code implementing only its own wire protocol;
end;

...
111

3) in each of the above cases, each side could selectively reuse modules fiom the

4) in every case, the use of object-oriented methodology is recommended but
other side;

optional.

Alternative (2) above thus allows each side to implement their own wire protocol (e.g., NASA
could use plain TCP/IP, SSL over TCP, or DCE over TCP, while ESA could use plain TCP/IP,
TP2, or CMIS/CMIP). In such a case, the two sides would meet at a designated software
"gateway interface", which must be capable of communicating via both protocols. The proposed
architecture dramatically simplifies the construction and maximizes the flexibility of such a
gateway, and has many further benefits. For example: even if both sides of the gateway use the
Same underlying inhstructure (e.g., SSL over TCP), the proposed architecture still simplifies
issues such as implementation and cross-management of the two security domains. It also
diows eakh si& to interopte with third parties using yet another underlying in;Erastructure,
thus allowing a single provider to implement several protocols simultaueously, with very little
additional code for each protocol. Moreover, a provider can migrate its internal infrasbructure
(for example fiom plain TCP/IP to SSL), and hence its internal wire protocol, without affecting
its interface to other users (i.e., by preserving the API).

iv

1.0 Introduction and Background

Within NASA, the trend is from large multihction missions to smaller, more focused
missions that are “better, faster, cheaper”. It is believed that this approach will improve the
return on NASA’s investment dollars, partly through increased opportunity to fund higher-risk
smaller missions, but also through intelligent reuse of successful mission components. There are
several keys to the success of this approach; for example, the ability to adapt rapidly to new
mission requirements (perhaps including the use of new technologies). There is obviously less
time to develop mission-specific architectures, and therefore a greater need for commonality
(i.e., reuse) where possible. This approach is being taken in JPL’s Advanced Deep Space
Architecture (a.k.a. X O O O) , whose aims are to provide a common platform for flight and ground
systems from which to specialize specific missions (in-situ, sample return, orbiter, etc.). A
fwther i w e being faced by NASA is that of outsourcing non-core activities, both to achieve the
federally-mandated reduction in stafling and to leverage use of commercial and academic
expertise.

Software development is clearly an area in which many of these issues have already been
addressed (though not necessarily solved). Several new software development approaches have
claimed to increase the adaptability, reusability, reliability, etc. of the software they produce,
while reducing cost, time, and workpower required. Today’s current wisdom claims that the use
of Software Component Technology can provide many of these benefits most effectively. For
this discussion, we define a software component to be: “a standalone implementation of an
object interface which provides standard ways to find and invoke its methods”. Use of
component technology has mushroomed over the last few years in the Commercial software
industry, since it appears to be the most promising way to achieve the reductions in time to
market and product adaptability required by the software marketplace in today’s rapidly-
changing economy.

In order to gain maximum benefit from the use of component technology, however, a
software architecture is required which can effectively utilize components. Some goals and
needs for such a software architecture are:

a) rapid adaptability (e.g., to new mission goals);
b) rapid assembly of new subsystems, mainly fkom available components;
c) a way to locate potentially usable components.

In turn, these needs require:

a) approaches to choose, design, build and manage components;
b) capability of demonstrating component use and measuring its benefits.

Issues involved in requirement (a) include: conducting domain analysis to identie the most
useful components; building a framework for the design and implementation of the chosen

1

components; building component management capabilities for deployment and subsequent
update of components. Issues involved in requirement (b) include: demonstration of usable
components; evaluating the cost of producing and maintaining components for comparison to
historical costs or those predicted if the component approach were not used.

1.1 TMOD Services

JPL’s Telecommunications and Mission Operations Directorate (TMOD) provides a suite
of Mission services, some which are grouped into several domains; for example; Telemetry,
Command, and Data Management (TCDM); Multimission Image Processing (M I P S) ; and
Common Services (CS). Beginning about two years ago, TMOD embarked on a software effort
to achieve some of the above software goals in a specific subset of Deep-Space Network @SN)
software development activities. This activity has provided significant background for the SLE
e.ffort des.cribed here. The Software Reuse effort initially addressed the last-mentioned of the
TMOD services (CS), since these were considered most likely to benefit fiom the component
approach described above. Common Services include Monitor and Control, Network,
Communications, and Data Delivery. The first components produced were produced fiom the
Monitor and Control domain, and provided encapsulation of the TMOD MON- 1 standards in
first object, then component form. These components thus allow a new subsystem to be
provided with generic monitor and control capabilities simply by utilization of the GIOMONl
API and dynamic linking with the GIOMONl component. Specific examples of the benefit of
such an approach are:

a) developers of the new subsystem do not have to deal with the underlying

b) developers of the new subsystem gain access to fully debugged and supported

c) the object API of the GIOMONl component allows significantly simpler

technology underlying the MON- 1 protocol (which happens to be DCE-based);

software which is maintained by another organization;

architecture for publish and subscribe of monitor and control data fiom user
applications, including a new capability to publisWsubscribe objects.

1.2 Communication Services

TMOD Communication Services include the Fault-Tolerant Data Delivery (FTDD)
service, which utilizes replicated servers to capture data published by producers and utilized by
subscribers. This service is accessed by an API and implemented for a subsystem in the
traditional way (i.e., procedural API and subroutine library linked with subsystem application
code). This library and API are provided and maintained by TMOD-CS, who also maintain the
MON-1 API and libraries.

These two examples of Common Services in current use exhibit some of the desired
features mentioned above. For example, both provide encapsulation of their service in an API
which hides the details of the underlying protocol (each of which is itself built upon standards

2

such as TCP/IP). However, there is an important difference between these two examples: the
MON- 1 API utilizes an underlying DCE-based protocol, which is developed using the DCE
Interface Definition Language (DL), while the FTDD service has no such IDL. The
significance of this is that the IDL guarantees that the MON-1 protocol will work on any
platform (regardless of implementation or language) which supports DCE. And although DCE
itself uses TCPAP or other networking standards, the actual MON-1 wire-level protocol
(although completely specified by the IDL) is unimportant to the service implementers (barring
performance considerations). Conversely, the FTDD service utilizes a proprietary wire protocol
(itself using unicast or multicast UDP/IP) which must be specifically implemented and tested by
the vendor separately on all participating platforms, even if they are lcno$to support the UDP/IP "

standard. In this example, we believe that it requires much more work to maintain and port the
latter protocol to new platforms or operating systems, since changes to the API may have
different ramifications on each, while similar changes to the API via the former's IDL are
guaranteed -- - to be independent of platform, language, or operating system.

In this section, we have discussed some issues regarding communications protocols and
some differences between specification at the wire level, the API level, and the IDL level. This
is important background for the discussion below on the proposed SLE service architecture.

1.3 SLE Services

Initially, the authors were introduced to the RAF SLE service as an API specification
written in DCE D L and a protocol written in ASN. I; the former provides many benefits as
outlined above, but requires the adoption of the DCE infrastructure, which may be undesirable
for various reasons. The latter does not allow specification of an API, thus losing many of the
advantages outlined above.

We therefore sought an approach that transcended the limitations of both these
approaches, and achieving more of the desired goals mentioned in Section 1.0. While in the
prototyping phase for the RAF service, we were also asked to consider CLTU service (required
for several JPL missions) whose implementation schedule apparently preceded that for RAF.
We therefore switched our attention primarily to CLTU, but wished to synthesize a consistent
architecture for all the SLE services (RAF, CLTU, RVCF, FSP). In fact, most of the prototyping
work we performed for the RAF service was directly applicable to the CLTU prototyping
activity. We believe our approach achieves all of the above goals, as described in more detail
below.

2.0 Component Somare

Software languages have evolved over the past decades fiom early low-level languages
(machine code, then assembly code) to higher-level languages such as FORTRAN and ALGOL
in the 1960's, to C and Ada in the 1970's, to C++ and Smalltalk in the 1980's, and most recently
to Java in the 1990's. Software methodology has similarly evolved fiom procedural to
structured to object-oriented, and finally to component technology. This final stage represents

I

3

the first viable opportunity for real commercial success of the reusability promise, since this is
the first technology to offer standalone implementation of required object-oriented functionality
without the need for knowledge of implementation details such as language or platform. Recent
but earlier attempts to provide some of these capabilities (e.g., DCE or CORBA) do not provide
the full benefits of the component approach by themselves, though such infrastructure may be
profitably used to implement platform-independent remote methods underneath the component
architecture. In fact, Microsoft’s@ implementation of Distributed COM (DCOM) utilizes the
DCE remote procedure call (RPC) to invoke remote methods (without requiring the rest of the
DCE infrastructure). We begin by defining our component terminology.

2.1 Definition of a Component

For the purposes of this discussion, we define a component as: bba standalone
implementation of an object interface that provides standard ways to find and invoke its
methods”. In turn, we define an object interface as bba cohesive set of methods that implement
specific actions”. (Neither definition needs to restrict the software to be object-oriented in
general, though we believe the use of object-oriented technology significantly simplifies the
implementation of the concepts described.) .

I Component

Figure 1: Analogy of Hardware Components

Figure 1 shows an analogy between software and hardware components. First, the ‘%omponent
socket’’ is analogous to the “object interface”. Second, both software and hardware
“components” perfom a specific set of actions (such as read and write for a memory chip).
Third, certain conventions assure the compatibility of equivalent components (e.g., pin
compatible alternates; bus, power and ground pins, etc.).

4

2.2 Benefits of Component Approach

Successful use of the component approach to software development leads to the
following benefits:

easy reuse: software once developed and debugged can be used again in other
contexts, facilitated by the component framework methodology (analogous to the
hardware conventions described above);
easy assembly: larger applications can be built from several pre-existing
components, and functionality can be added or changed by replacement of one or
more such component, again following similar rules to the “pin compatibility”
analogy;
greatjlexibility: such changes in functionality can, in fact, occur dynamically
(i.e., at runtime), analogous to the hardware concept of “hot swappability”;
use of components can enforce good object-oriented design: it is more difficult to
“cut corners” with component interfaces than with object interfaces, since the
former must be capable of being utilized from many different environments, thus
requiring more care in implementation; this benefit accrues only when the
component is built as a specialized object structure;
cost savings: many software vendors claim that their use of component
technology significantly reduces cost and cycle time in all phases of the s o h a r e
lifecycle, namely design, development, integration and test, and maintenance; in
some cases, it is claimed that the software development effort would not even be
manageable without the use of components.

Unfortunately, these benefits do not come for free. First, there is a significant investment in
training and experience required to succeed with components; this investment exceeds that
required for good object-oriented practice, since components must be built even more carefully
than equivalent objects. A particular example is the necessity for thread safety - since the
component cannot know who will invoke its interfaces or how often, it is essential that every
component be thread-safe; similarly, global variables cannot be used with components for the
same reasons. In both examples, an object-oriented application could successfully violate these
rules, though we would not recommend it.

2.3 C++ Construction of a Component

The C++ class structure with virtual inheritance provides a very good implementation
template for the above component defmition. In the example shown in Figure 2, we can define
interfaces IF1 and IF2 each as a pure virtual class, but the class implementing the component can
inherit from both interface classes. This indicates how a component can provide several
interfaces, each with separate implementation of the same or different methods.

5

I I .- -
Component

Figure 2: A Simple Example of a Component Carrying Two Interfaces

Example C t t code for this component is as follows:

i n t e r f a c e I F 1 : v i r t u a l p u b l i c IUnknown
(

1
v i r tua l He l loWor ld (1 = 0 ;

i n t e r f a c e IF2 : v i r t u a l p u b l i c IUnknown
{

I
v i r tua l He l loWor ld () = 0 ;

c l a s s component : publ ic IF1 , publ ic IF2
I

HRESULT Q u e r y l n t e r f a c e () ;
unsigned long AddRefO;
uns igned long Release0 ;

1

Note that the component contains only the three necessary, sufficient and mandatory methods for
. any COM component.

2.4 Examples of Components

A recent concept that has rapidly gained popularity is that of the "plug-in". For example,
popular internet browsers provide an internal interface which allows new code to be added for
the purpose of handling new data types which were unforeseen when the browser was initially
installed (or even built). An example of such a plug-in is one to process streaming audio or
video data. Such a plug-in fits the dynamic component concept well, since after the plug-in is
installed, the browser utilizes the plug-in interface to route the appropriate data type to the plug-

6

in, which itself is dynamically linked and loaded only when needed (i.e., when such a datastream
is recognized). This dramatically simplifies the deployment of the browser, since it needs only
to provide and publicize the plug-in framework, and allows the implementation of specific plug-
ins to be delegated to other vendors. Moreover, update or replacement of such plug-ins often
does not need to affect the browser, since it often requires only replacement of a particular
dynamic link library (DLL) on the browser machine's filesystem. Later in this paper, we will
revisit this concept to show how our proposed SLE component architecture supports this elegant
"plug-in" concept.

2.4.1 GIOMONl Component

- ~ -

"" .

Before moving on to the SLE components, however, we present another example of both
historical and relevant tutorial interest. As mentioned above, one of the existing TMOD
Common Services is the MON-1 standard used for monitor and control of DSN subsystems.
This d c e allows subsystems (such as the telemetry subsystem) to publish monitor data (such
as health and status) and subscribe to control commands (such as configuration directives). It
also allows the operator (sitting at a Network Monitor and Control (NMC) subsystem) to
subscribe to such monitor data and publish such control commands. This set of services is
implemented on top of a commercially-supplied DCE infhstructure (JBM/"ramarc@), which
provides a complete and integrated standard set of distributed services such as directory, file,
time, and security, as well as robust automated service replication capabilities. Since all live
subsystems in the DSN must be monitored and controlled, often by a single operator (and there
are currently about 30 different subsystems), this service seemed an ideal candidate for the first
TMOD component. The MON-1 API (specified via DCE IDL) was therefore encapsulated, fist
into an object API, then into a component (GIOMONl) carrying several intedaces, including
ones for publish and subscribe, in a similar manner to that outlined for the HelloWorld
component above.

Several benefits accrued fiom this encapsulation. For example, the underlying MON-1
service is not object oriented, thus it is not possible to "publish" an object, but only particular
data types (integer, string, etc.). However, the encapsulated GIOMONl service provides a
simple mechanism to extend the capability of the MON-1 service to allow such objects to be
published and subscribed. Many other extensions have been proposed (and some implemented);
none has required any modification to the underlying MON-1 service.

Another example benefit of the GIOMONl encapsulation is that it provides a simple way
to allow a monitored subsystem to be relieved of the requirement to implement the DCE
infirastructure (note that many of the 30 subsystems are relatively old, and some do not even
support TCP/IP). Since the implementation details of the underlying MON-1 Service are hidden
fiom the user application via the GIOMONl intdace, the service can, in fact, exist on a
different machine fiom the user application without its knowledge. This is an important
precursor to the evolution of the SLE component architecture described below.

7

Appendix 9.1 gives sample code showing how a new subsystem could instantiate and use
a publisldsubscribe object by using the (dynamically linked) GIOMON1 component.

2.5 Platform Issues

Several component models exist today or are emerging: Java has the Beans component
model, and CORBA is in the process of defining a component model. However, by far the most
mature and widely deployed one is Microsoft’s@ Component Object Model. This developed
initially in early Windows 3 as Dynamic Data Exchange (DDE), then evolved into Object
Linking and Embedding (OLE), and later into Network OLE, ActiveX, OCX, DCOM, etc. For
the purposes of making progress within TMOD in the component marketplace, we therefore
chose the C++ language and the published COM specification without relying on any vendor
implementation or tools. The italicized words are emphasized to attenuate latent criticism
directed at our selection of a particular language, vendor or proprietary component technology,
but there is insufficient space here to develop the arguments and counter-arguments that have
occurred. We merely note that the concepts described here could be implemented in other
languages and component models (such as Java Beans) if required or sensible. We believe the
most important point is that we are using open, published specifications for language and
component model at the source code level, and thus we do not depend on any vendor licensing
or hardware platform restrictions. Moreover, as shown in Figure 6 below, our component API
can utilize code written in other languages (such as C or Ada), by wrapping it into our
component shell to obtain the architectural benefits described (see component 3 with the square
around it).

3.0 SLE Service Components

Having described the concept and benefits of a component architecture, and chosen an
initial object model and language, we can now turn to the SLE service component architecture.
The service interfaces can be naturally mapped into layers that will be described in further detail
below. As we develop this layered description, we hope it becomes progressively clearer to the
reader how naturally the component model fits the proposed service architecture.

3.1 Architectural Layers

Figure 3 shows the simplest possible partitioning of a service API for use by an
application, while supplying the benefits described above (e.g., encapsulation). This picture fits
both the MON-1 and FTDD APIs mentioned above. However, if the SLE service is
implemented using components, then many benefits accrue. For example, different
implementations of the service can be utilized (even dynamically) without impact to the user
applications; this would not be achievable through the use of an API alone, but is enabled by the
component approach. As a more tangible benefit, this approach also allows each party in an

8

interface agreement (e.g., JPL and ESOC) to implement and evolve the SLE services separately
from their applications, while achieving interoperability both with the services and each other. It
also provides some consistency in the architecture among the different services.

SLE providerhser applications

! “ “ “ “ . I i (RAF,CLTU,RVCF,FSP) j I
. . .”_.” I

SLE services in’

Communications Infrastructure

Figure 3: Service Overview

3.2 Common Application Programming Interface

We propose that a single object-oriented service API be carried throughout the chain
from User application to Provider application, thus allowing each participant to directly utilize
the SLE API while retaining the benefits of encapsulation of the implementation. This coupling
is fully reversible, i.e., a different application could be swapped (even dynamically) on top of the
SLE service in the same way. For example, User and Provider applications could be swapped.

Our view of the SLE service object in Figure 3 is thus that it represents the other end’s
application. For example, the SLE service provides a proxy of the Provider application to the
User application. Or, more strikingly, the User application “plugs into” the Provider application
(albeit indirectly). We have extended this concept to every layer of this communication as
described below. This follows the concept of peer-to-peer virtual communication at every layer
(cf. the IS0 7-layer stack), by using the component architecture to handle connections above and
below each layer. Moreover, since the component architecture allows more than one interface to
be carried by a component, as described in Section 2.3 above, we envision that the service
component could carry one or more Administrative interfaces in addition to those for
communication with the User or Provider above and with the Network below. In fact, even this
Administration interface could be separated into “common” required methods (implemented by
all parties to an interface agreement) and “private” optional methods (which are hidden from the
other party and deal only with local issues such as the particular security model or the particular
monitor and control mechanism).

9

3.3 Interface to Communications Infrastructure

Looking more closely at the service layers, we can now address the fact that the
communications infrastructures may differ, depending on the domain. For example, JPL could
choose DCE for data transport, while ESOC could choose TP2. Our approach takes care of such
“mismatches” by implementing the same API for the appropriate domain at each layer.

SLE user Drocess

SLE component of
organization A t SLE component of

organization R
I , \ / I

GATEWAY

Figure 4: Service Component Architecture
Figure 4 shows a “gateway” representing the bridge between two such different communications
infi-astructures. Following our component architecture, such a gateway can be easily assembled
from reusable components which will already have been built and tested by each side to
implement their own lower layers. The issue of interoperation has now been localized to a
single platform, thus avoiding language, operating system, or network mismatches. Next, we
shall see how the component architecture facilitates even this interface.

3.4 Infrastructure Proxy

Looking from the Service Object’s viewpoint, the application above and the network
below are two users of its services (and carry the same MI). In order to achieve this, we
partition the service further into a “service only” component and a “domain proxy” component.
Again, the proxy represents the “other end” to the service component. This is shown as the
dashed line in Figure 5.

10

SLE user process

B

1 Communications I

GATEWAY

Figure 5: Reusable Implementation (via Proxies)

The obvious benefit of this approach (apart from joint ownership and reusability of the single
API) is that several different domains can be served seamlessly via separate proxies (which
contain and localize all domain-specific code but still conform to the single API). In the
example JPL-ESOC chain mentioned in Section 3.3 above, all DCE-based information would be
in a JPL’s “DCE proxy”, while all TP2-based information would be in ESOC’s “TP2 proxy”.
This further frees the service object itself to be reused independently of the domain (Service
Objects A and B could either be identical or different implementations, e.g., for platform,
language, or political reasons).

3.5 Example Implementations

Example implementations of the “3-layer” approach described above are shown in
Figures 6 and 7 for two situations:

1) ProviderKJser have the same network infrastructure;
2) ProviderKJser have different network infrastructures.

In Figure 6, the Provider Application is labeled 1, the User application 2, the Service Object 3,
and the domain proxy 4. Note that this case does not require a gateway; the service on side B
could be implemented in another language (perhaps not even object-oriented) provided it is
wrapped into the service component API (as represented by the alternative path via a boxed
version of service component 3).

1 1

SLE service applications

SLE service SLE service

of
B

i

Wire protocol: TCP,SSL,DCE, ...

Figure 6: Example A: Provider/User have same network

Next, Figure 7 shows case 2, which requires only one more component: the second “domain
proxy” (component number 5). The gateway, however, can now be assembled from components
already produced by both sides.

SLE service applications

SLE service.. SLE service
provider 1 Q ~

(e.g., JPL] ~

GATEWAY
(assembled from components)

Figure 7: Example B: ProviderKJser have different networks

A key breakthrough here is that this configuration frees each side to independently specify (or
even change) its internal wire protocol or infrastructure (including security domain). The other
side doesn’t even have to know what these are, as long as both sides agree to host that
infrastructure on a common machine. This is because the “actual service interface” between the

12

two organizations occurs on this one machine (at the subroutine level between the two
components numbered 3 inside the gateway below), each of which implements the same SLE
API (and which could be interchanged). This therefore resolves all interface issues of differing
platform, protocol, security domain, etc. by providing a common platform at which to meet,
capable of hosting several protocols, security domains, etc. Moreover, the approach suggests
that the software for this platform can be assembled from pieces already provided by each side.
This approach thus allows greater independence, flexibility and much more simple
implementation and management of a complex interface (e.g., spanning two security domains
and network infrastructures) than that possible when the interface must be reduced to specifjmg
bytes on a shared wire.

4.0 SLE Service Component Framework

In order for an application to utilize a service component in our architecture, an instance
ofthe &ce object must be created (the example in Section 2.3 above showed an instantiation
of the “J3elloWorld” object via the component. Before the instance can be created, however, the
appropriate component must be located and loaded. This is achieved by an infrastructure
component that we call the Component Registration Component, or ComRegCom. This
component has three task.

1) Component Registration: ComRegCom maintains a “component registration
database” which provides component storage and query, i.e., a Component
Repository.

2) Component Retrieving: ComRegCom could include authentication and
authorization for allowable combinations of application and component.

3) Component Loading: ComRegCom loads the retrieved service component into
the application process and returns the component interface to the application.

4) Component Release: ComRegCom destroys the service object and releases -
associated resources. (This step would be required if the service object were to be
dynamically swapped by the user application).

This last step contains two substeps: first the loaded component exports the “component
instantiation interface”, and second, the application can find the desired interface by querying
the loaded component, which responds by exporting the desired component interface.

4.1 Software Build Process

The above procedure utilizing ComRegCom is thus implemented in the following steps:

1 the application brings in the ComRegCom component through dynamic linking;
2 the application specifies the desired component and interface; ComRegCom starts

3 ComRegCom after finding the component brings it in through dynamic loading;
to search for the component;

13

4 ComRegCom uses the Component Instantiation Interface to find the desired

5 the interface is ready for use by the application.
interface;

4.2 Installation Process

For the specific case of the SLE service, ComRegCom can be reused to discover which
components are needed for each situation (User, Provider, Gateway). This is achieved via an
“SLE registration database” which contains information such as: number of components needed
for each situation; type of components; valid instantiation values for each component; ordering
information for the available configurations. The actual locations of the specified components
are held separately in the “component registration database”. For example, a particular mission
might require communication between JPL and ESA via a gateway. The “SLE registration
database” would contain the required information for the gateway for this mission, such as:
&ich proxies are required for each side; which Service components are required (RAF, etc.);
instantiation values such as port ID number.

4.3 Configuration Management

The above architecture is highly flexible and provides reusability of key components.
However, successful use of this architecture requires additional infrastructure to be provided.
One of the important issues not addressed in this paper is that of Configuration Management
(e.g., of component versions). In keeping with the distributed nature of the SLE services, such
configuration management must necessarily be capable of being distributed if a single repository
is not used for all pieces (e.g., a single shared database or a set of files in a globally-accessible
distributed file system).

5.0 Conclusions

Our approach to defining a platform-independent architecture for SLE services using a
common, component-based API achieves the following goals:

a) isolates API specification fiom implementation issues (language, platform, etc.);
b) allows modular deployment of service components;
c) leverages recent advances in software development methodology, such as rapid

d) facilitates operation over standards-based inhstructures;
e) frees application code fiom knowledge of lower layers;
f) allows applications and Services to utilize modules dynamically.

prototyping and reusability;

Further, our proposed layered implementation of these component interfaces provides several
options for a new kind of interface agreement that does not require wire-level specifications to
be agreed (or even exchanged). For example:

14

1) one side could provide all the code implementing a specific wire protocol end to end;
2) each side could provide code implementing only its own wire protocol;
3) in each of the above cases, each side could selectively reuse modules fiom the other

4) in every case, the use of object-oriented methodology is recommended but optional.
5) separate security policies can be implemented on each side

side;

Alternative (2) above thus allows each side to implement their own wire protocol (e.g., JPL
could use plain TCP/IP, SSL over TCP/IP, or DCE over TCP/IP, while ESOC could use plain
TCP/IP, TP2, or CMWCMIP). In such a case, the two sides would meet at a designated
software “gateway interface”, which must be capable of hosting both protocols. The proposed
architecture - . - - .- dramatically . simplifies the comtruction and maximizes the f l e x i b i l i m a ”
gateway, and has many further’lymefits. For example: even if both sides of the gateway use the
‘&e n&ork inhstructure (e.g., SSL), the proposed architecture could still simplify interaction
between the two security domains. It also allows each side to interoperate with third parties who
may be using yet other underlying inhstmctures. In fact, a single provider could implement
several such protocols simultaneously, with very little additional code for each protocol (just the
“domain proxy”). Moreover, a provider can migrate its internal infrastructure (for example from
plain TCP/IP to SSL), and hence its internal wire protocol, without affecting its interface
agreement with the other parties.

, ,. ”..” ~ , . . . ”

. I “.. ~ “ “ U 1

The component approach outlined above has been accepted for implementation by JPL
and ESOC for the Integral and Cluster I1 missions. Within JPL, the component architecture is
being implement for the SLE CLTU service (via new command and telemetry subsystems) as
well as by independent conbcacfors for the 26m antenna services (LEO missions). The gateway
implementation team at JPL is responsible for integrating the required components and
implementing the required databases (such as “SLE registration” and “component registration”
databases). The matrix below shows example entries of implementation responsibility for
particular SLE components.

JPL gateway 26m. JPL TLM t S O C JPL CMD
SLt application
SLt Service

up/dmlink d m l l n k up/doumlink uplink

CLTU, t-SP ’uct Proxy
CL1 u socket Proxy

CLTU, FSP FSP RAF, FSP CLTU component

- -

CLTU, MI-,
CMlS proxy FSP

ComRegCom,
SLE reg db

Infrastructure component r e g db

6.0 Acknowledgements

15

The work described was performed at JPL, California Institute of Technology under
contract with NASA. The authors acknowledge the contribution of various s o h e teams who
contributed to the material described herein, or who are actually implementing subsystems to
provide SLE services, reusable TMOD components, or both. This acknowledgement extends to
the managers of these teams, working to test and veri@ the promise of Component Technology.
This work was funded primarily by JPL's TMOD with additional support fiom JPL's
Institutional Computer and Information Systems.

7.0 References

[.1] Space Link Extension - Cross Support Concept Part 1. CCSDS 910.4-B-1. Blue Book.

[2] Unpublished internal JFL reports on software reuse.
[3] Unpublished internal JPL description of TMOD service architecture
[4] 'component software: Beyond Object-Oriented Programming", Clemens Szyperski,

[5] "SOFTWARE REUSE: Architecture, Process and Organization for Business Success",

Issue 1. May 1996.

ISBN 0-201-17888-5,1998, Addison Wesley Longman Limited.

by Ivar Jacobsm,.Martin Griss. Patrik Jonsson. ISBN 201-924765,1997. Addison
Wesley Longman Limited

[6] "Inside COM: Microsoff s.Component Object Model", by Dale Rogerson, ISBN 1-57231-
349-8,1997, Microsoft Press.

[7] Interface Control Document between ESA D/TOS and JPL "MOD for INTEGRAL,
March 30,1998 (contains draft SLE M I) .

16

8.0 Glossary of Acronyms

API
CMIS
CMIP
COM
DCE
DSCC
DSN
FTDD
GIOMONl
D L
MON- 1

SSL
TCP/IP
TMOD
TP2

SLE

Application Programming Interface
Common Management hfbtructure Service
Common Management Infrastructure Protocol
Microsof€@ Common Object Model
Distributed Computing Environment (of The Open Group)
Deep Space Communications Center (of JPL)
Deep Space Network (of JPL)
Fault-Tolerant Data Delivery
Generic Input Output - MON-1 component
Interfbce Deibition Language
TMOD’s standard far Monitor and Control Services
Space Link Extension
Secure Socket Layer
Transmission Control Protocofiternet Protocol
Telecommunications and Mission Operations Directorate (of JPL)
Transmission Protocol 2

17

9.0 Appendix: Code Examples

Section 9.1 illustrates the use of the GIOMONl component described in Section 2.4.1
above.

9.1 Example Use of GIOMONl Component

The code is shown in three parts:

a) the header file for the component interface, which contains definitions of the intdace's

b) the header file for the component (Section 9.1.2), which contains the class definition and

c) and the actual code which instantiates the component (Section 9.1.3).

methods and some constants (Section 9.1.1);

-. - its. method signatures;

Note that this component contains two interfaces, just as the simple example in Section 2.3; the
first interface is actually a "container" interface for the second, which is the actual component.
The utility of this container intdbce is that this allows multiple instantiations of the
publishhbscribe object to be handled uniquely, thus extending the functionality of the service
as mentioned in Section 2.4.1. Moreover, it allows the user to know (via the reference counters)
how many objects have been created, when these reference counters have returned to zero, then
all objects have been released and the component can be dynamically unloaded. Without the
container, this would not be so robust. This is important background for the SLE service
component interface, which could also use this technique to handle multiple instantiations.

9.1.1 Header File for GIOMONl Component Interface

.
*
* P r o j e c t : REUSE

* F i l e name: GIOMONIIF.H

* ABSTRACT

*

*

*
* T h i s f i l e d e f i n e s t h e i n t e r f a c e s s u p p o r t e d by t h e GIOMONl

component.

* DATE NAME REV REMARKS

* 8 / 7 / 9 7 Imin Lin 0 . 0 . 1 Or ig ina l Release

.

*

*"""""""""""""""""""""""""""""""""""

*

i fnde f G I O M O N l I F H
#def ine GIOMONlIF-H -
inc lude "C - COM. H"

18

//IUnknown i n t e r f a c e 822e8630-104f-lldl-8Oal-OOaaOO27bOl6
#de f ine I I D GIOMONl COMPONENT DEF
(0 x 8 2 2 e 8 6 3 0 ~ 0 x 1 0 4 f , ~ x l l d l , { Oxgo, Oxal, 0x00, Oxaa, OxOO,Ox27, QxbO, Ox16} }

/ /MON-l CONTAINER i n t e r f a c e 407862a0-0790-11d1-809e-OOaaOO27b016
#def ine I I D MONlCONTAINER-DEF
{ 0x407862a0~0x0790, Oxlldl, Ox80,0x9e, 0x00, Oxaa, OxOO,Ox27, OxbO, 0x161 }

/ /MON-l PUBLISHER/SUBSCRIBER i n t e r f a c e 470acc10-0790-lldl-809e-OOaaOO27b016
#de f ine I I D PUBSUBER DEF
[0x470acclO~0x0790, Oxlldl , [Ox80,0x9e, 0x00, Oxaa, OxOO,Ox27, OxbO, Ox161 1

i n t e r f a c e MON1-Container : IUnknown

vir tual void Container-setup(char* container-name)=O ;
v i r t u a l c h a r * C o n t a i n e r whoO=O ;
v i r t u a l ULONG C o n t a i n e r I g e t r e f c t () = O ;

1 ;

i n t e r f a c e MONl Publ i sh Subscr ibe : IUnknown
I

- -
vir tual void PubSub-setup(char* reg-name)=O ;
v i r t u a l c h a r * PubSub who () = O ;
v i r t u a l ULONG PubSub-getrefctO=O - ;

1 ;

#endi f

9.1.2 Header File for GIOMONl Component

.
*
* P ro jec t : REUSE

* F i l e name: GIOMON1.H

* ABSTRACT

*

*

*
*

DATE NAME REV REMARKS
*"""""""""""""""""""""""""""""""""""
*8/7/97 Imin Lin 0.0.1 O r i g i n a l Release

**/

i fndef GIOMONl H
#de f ine GIOMONl-H -
#inc lude "C COMIMPL. H"
#inc lude I* GTOMON 1 I F . H
inc lude "C - st r ing .H"

c l a s s GIOMONl : p u b l i c MONl Container ,
p u b l i c MON1-Publish Subscr ibe

{
pub l i c :

- -

v i r t u a l HRESULT s t d c a l l Q u e r y I n t e r f a c e (c 0 n s t G U I D C i i d , void** ppv) ;
v i r t u a l ULONG -stdcall AddRefO ;

19

v i r t u a l ULONG - s t d c a l l R e l e a s e () ;
GIOMONl () ;

p r i v a t e :
i n t c u r r e n t - I F i d x ;
IRefmg* IRefmanager ;
Cstring container-nm ;
Cstr ing pubsub - nm ;

p u b l i c :
s t a t i c d o u b l e i n i t f l a g ;
s t a t i c v o i d i n i t (1 { ; }
v i r tual void Container-setup(char* container-name) {

v i r t u a l c h a r * C o n t a i n e r who () { r e t u r n ((char*) (*container-nm)) ; 1
v i r t u a l ULONG C o n t a i n e r t e t r e f c t o { re turn IRefmanager->GetRefct() ; }
v i r t u a l v o i d PubSub setup (cha r* r eg name) pubsub-nm=reg-name ;)
v i r t u a l c h a r * PubSu6 who () (return-("Pub Sub who") ; 1

container-nm=container-name ; 1

" - v i r q u a l ULONG PubSub-getrefct - () (return IRefmanager->GetRefct () ;)
1 ;

#endi f

9.13 Example Program Code Using the Component

Mer reviewing the component intdace and class definition in the previous header files,
the component user needs only to instantiate the component (via CoCreateInstance(), which can
use the ComRegCom component described in Section 4.1 to locate, load, and link the
component code), then use the component's interfaces directly. First, the code below creates a
container object (monlcontainer) and proves the success by calling its "who()" method. Then it
uses the standard Queryhtdhce() method to discover the pub/sub intdace (which happens to
be the second one as shown above), and proves the success by calling its "who()" method. After
these few introductory calls, the main program can immediately start publishing and subscribing
data.
#inc lude "C COM. H"
inc lude "C-COMreg . H"
inc lude l l ~ I O ~ ~ ~ l ~ ~ . ~ l l
#include "C s t r i n g . H"
inc lude Ciostream. h>

I I D I I D GIOMONl COMPONENT=IID GIOMONl COMPONENT-DEF ;
I I D I I D " M O N l C O N ~ A I N E R = I I D MONiCONTAINER DEF ;
IID I I ~ P U B S U B E R = I I D PUBSUBER-DEF ;

-
- -

main ()
(

MON1-Container* monlcontainer ;
MONl Container* monlref2 ;
MON1-Publish Subscribe* pubsub ;
HRESULT r e s u i t ;

//Use t h e ComRegCom component t o l o c a t e / l i n k / l o a d GIOMONl component
/ / and create a r e f e r e n c e t o t h e c o n t a i n e r o b j e c t
cout<<"About t o create Component Register==>"<<endl ;
resu l t=CoCrea teIns tance (I I D - GIOMEN1-COMPONENT, (IUnknown* 1 0, 0,

20

I I D - MONlCONTAINER, (void**) (&monlcontainer) 1 ;

if(SUCCEEDED(resu1t))
I

monlcontainer->Container s e t u p ("MON c o n t a i n e r 1") ;
monlref2=monlcontainer ;
monlcontainer->AddRef() ;
cout<<llContainer - "<<monlcontainer>Container who (1 <<"\n" ;
cout<<"Referenced by -"<<monlref2->Container getrefct (1 <<"\n" ;

-

I
else
I

-

cou t <<"Con ta ine r In t e r f ace f a i l ed \n" ;
e x i t (0) ;

1
result=monlref2->QueryInterface(IID_PUBSUBER,(void**) (&pubsub)) ;
if(SUCCEEDED(resu1t))
I

.- - pubsub->Pubsub - setup("MON1 pub sub 1") ;
cout<<"PubSub = "<<pubsub->PubSub who (1 <<"\n" ;
cout<<"Reference by -"<<pubsub->P&Sub g e t r e f c t (<<"\n" ;
CoFreeUnusedLibraries (I I D - GIOMONl - COMPONENT, I I D - MONlCONTAINER) ;

I
else

cou t <<"PubSub I n t e r f a c e f a i l e d \ n " ;
I

21

	1.0 Introduction and Background
	1.1 TMOD Services
	1.2 Commmcabon Services
	1.3 SLE Services
	2.0 Component Software
	2.1 Definition of a Component
	2.2 Benefits of Component Approach
	2.3 C++ Construction of a Component
	2.4 Examples of Compon en
	2.4.1 GIOMONl Component
	2.5 Platform Issues
	3.0 SLE Service Components
	3.1 Architectural Layers
	3.2 Common Application Programming Interface
	3.3 Interface to Communications Inflastructure
	3.4 Mi-astructure Proxy
	3.5 Example Implementations
	4.0 SLE Service Component Framework
	4.1 Software Build Process
	4.2 Installation Process
	4.3 Configuration Management
	5.0 Conclusions
	6.0 Acknowledgements

